Affiliation:
1. Departamento de Física Teórica, Facultad de Ciencias Físicas, Universidad Complutense
Abstract
We propose a novel discretization procedure for the classical Euler equation, based on the theory of Galois differential algebras and the finite operator calculus developed by G.C. Rota and collaborators. This procedure allows us to define algorithmically a new discrete model which inherits from the continuous Euler equation a class of exact solutions.
Publisher
Centre pour la Communication Scientifique Directe (CCSD)
Reference23 articles.
1. Bobenko A I and Suris Yu B Discrete differential geometry. Integrable structure, Graduate Studies in Mathematics, 98. American Mathematical Society, Providence, RI, 2008.
2. Bouguenaya Y and Fairlie D B, A finite difference scheme with a Leibniz rule, J. Phys. A: Math. Gen. 19, 1049-1053, 1986.
3. di Bucchianico A and Loeb D, A selected survey of Umbral calculus, Electron. J. Combin. DS3, 2000. http://www.combinatorics.org.
4. Dimakis A, Müller-Hoissen F, and Striker T, Umbral Calculus, Discretization and Quantum Mechanics on a Lattice, J. Phys. A: Math. Gen. 29, 6861-6876, 1996.
5. Friedberg R and Lee T D, Discrete quantum mechanics, Nucl. Phys. B 225, 1-52, 1983.