A Slow-Exchange Interstitial Fluid Compartment in Volunteers and Anesthetized Patients: Kinetic Analysis and Physiology

Author:

Hahn Robert G.1,Dull Randal O.234

Affiliation:

1. Department of Clinical Sciences, Karolinska Institute at Danderyds Hospital (KIDS), Stockholm, Sweden

2. Department of Anesthesiology University of Arizona College of Medicine, Tucson, Arizona

3. Department of Pathology University of Arizona College of Medicine, Tucson, Arizona

4. Department of Surgery, University of Arizona College of Medicine, Tucson, Arizona.

Abstract

BACKGROUND: Physiological studies suggest that the interstitial space contains 2 fluid compartments, but no analysis has been performed to quantify their sizes and turnover rates. METHODS: Retrospective data were retrieved from 270 experiments where Ringer’s solution of between 238 and 2750 mL (mean, 1487 mL) had been administered by intravenous infusion to awake and anesthetized humans (mean age 39 years, 47% females). Urinary excretion and hemoglobin-derived plasma dilution served as input variables in a volume kinetic analysis using mixed-models software. RESULTS: The kinetic analysis successfully separated 2 interstitial fluid compartments. One equilibrated rapidly with the plasma and the other equilibrated slowly. General anesthesia doubled the rate constants for fluid entering these 2 compartments (from 0.072 to 0.155 and from 0.026 to 0.080 min–1, respectively). The return flows to the plasma were impeded by intensive fluid therapy; the rate constant for the fast-exchange compartment decreased from 0.251 to 0.050 when the infusion time increased from 15 to 60 minutes, and the rate constant for the slow-exchange compartment decreased from 0.019 to 0.005 when the infused volume increased from 500 to 1500 mL. The slow-exchange compartment became disproportionately expanded when larger fluid volumes were infused and even attained an unphysiologically large size when general anesthesia was added, suggesting that the flow of fluid was restrained and not solely determined by hydrostatic and oncotic forces. The dependence of the slow-exchange compartment on general anesthesia, crystalloid infusion rate, and infusion volume all suggest a causal physiological process. CONCLUSIONS: Kinetic analysis supported that Ringer’s solution distributes in 2 interstitial compartments with different turnover times. The slow compartment became dominant when large amounts of fluid were infused and during general anesthesia. These findings may explain why fluid accumulates in peripheral tissues during surgery and why infused fluid can remain in the body for several days after general anesthesia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3