Benefit of Flow-Controlled Over Pressure-Regulated Volume Control Mode During One-Lung Ventilation: A Randomized Experimental Crossover Study

Author:

Schranc Álmos1,Diaper John1,Südy Roberta1,Fodor Gergely H.2,Habre Walid13,Albu Gergely14

Affiliation:

1. Unit for Anesthesiological Investigations, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland

2. Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary

3. Pediatric Anesthesia Unit, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland

4. Division of Anesthesiology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland.

Abstract

BACKGROUND: Application of a ventilation modality that ensures adequate gas exchange during one-lung ventilation (OLV) without inducing lung injury is of paramount importance. Due to its beneficial effects on respiratory mechanics and gas exchange, flow-controlled ventilation (FCV) may be considered as a protective alternative mode of traditional pressure- or volume-controlled ventilation during OLV. We investigated whether this new modality provides benefits compared with conventional ventilation modality for OLV. METHODS: Ten pigs were anaesthetized and randomly assigned in a crossover design to be ventilated with FCV or pressure-regulated volume control (PRVC) ventilation. Arterial partial pressure of oxygen (Pao 2), carbon dioxide (Paco 2), ventilation and hemodynamical parameters, and lung aeration measured by electrical impedance tomography were assessed at baseline and 1 hour after the application of each modality during OLV using an endobronchial blocker. RESULTS: Compared to PRVC, FCV resulted in increased Pao 2 (153.7 ± 12.7 vs 169.9 ± 15.0 mm Hg; P = .002) and decreased Paco 2 (53.0 ± 11.0 vs 43.2 ± 6.0 mm Hg; P < .001) during OLV, with lower respiratory elastance (103.7 ± 9.5 vs 77.2 ± 10.5 cm H2O/L; P < .001) and peak inspiratory pressure values (27.4 ± 1.9 vs 22.0 ± 2.3 cm H2O; P < .001). No differences in lung aeration or hemodynamics could be detected between the 2 ventilation modalities. CONCLUSIONS: The application of FCV in OLV led to improvement in gas exchange and respiratory elastance with lower ventilatory pressures. Our findings suggest that FCV may offer an optimal, protective ventilation modality for OLV.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3