Smad2/3 signaling involved in urotensin II-induced phenotypic differentiation, collagen synthesis and migration of rat aortic adventitial fibroblasts

Author:

Lin Weizhao,Yang Xu,Zheng Fan,Yang JiansheORCID,Zhang YonggangORCID

Abstract

Objective. To investigate whether Smad2/3 signaling is involved in urotensin II (UII) induced activation of aortic adventitial fibroblasts. Materials and Methods. Growth-arrested adventitial fibroblasts were stimulated with UII in the presence or absence of urotensin II receptor (UT) antagonist SB710411 or transfected with Smad2/3 small inhibitory RNA (siRNA). UII stimulated Smad2/3 phosphorylation, α-smooth muscle actin (α-SMA), and collagen I expression and migration of adventitial fibroblasts were evaluated by western blot analysis, real-time reverse transcription polymerase chain reaction, immunofluorescence, ELISA, and transwell migration assay, respectively. Results. In cultured adventitial fibroblasts, UII time- and dose-dependently stimulated Smad2/3 protein phosphorylation, with maximal effect at 10-8 mol/l (increased by 147.2%, P<0.001). UII stimulated Smad2/3 upregulation and nuclear translocation. SB710411 significantly inhibited these effects. In addition, UII potently induced α-SMA and procollagen 1 protein or mRNA expression (P<0.01), which were completely blocked by Smad2 (decreased by 75.1%, 54.2% in protein, and by 73.3% and 38.2% in mRNA, respectively, P<0.01) or Smad3 siRNA (decreased by 80.3% and 47.0% in protein, and by 72.3% and 47.7% in mRNA, respectively, P<0.01). Meanwhile, Smad2 or smad3 siRNA significantly inhibited the UII-induced collagen 1 secretion and cell migration. Conclusions. UII may stimulate adventitial-fibroblast phenotype conversion, migration, and collagen I synthesis via phosphorylated-Smad2/3 signal transduction pathways.

Publisher

PAGEPress Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3