Study of on-site upgraded livestock biogas production and carbon emission reduction by substituting coals for thermal power generation

Author:

Chen Wei-Chen,Su Jung-Jeng

Abstract

The objective of this project is to integrate a farm-scale bio-desulfurization facility with a novel biogas hollow fibre adsorption module for biogas desulfurization and bio-natural gas production. In this study, the desulfurization experimental results showed that the bio-desulfurization system can remove 96.7 ± 6% of H2S from the biogas after an approximately two-month enrichment period. The average CH4, N2, and CO2 concentrations in raw biogas were 63.4, 15.2, and 21.1%, respectively. As for biogas upgrading experiments, the inlet biogas flow rates were applied from 5 to 20 L/min. The removal efficiency of CO2 under all biogas flow rates was 100%. Meanwhile, methane was promoted from 60% to nearly 94% (i.e. 57% increase in methane concentration). The replacement of anthracite and coking coal by upgraded biogas might reduce 44.4% and 42.5% of CO2 equivalent, respectively. The achievement of this project pursues the mitigation of carbon dioxide emissions by using upgraded pig biogas which can be enlarged and extended to all decentralized pig farms worldwide.

Publisher

PAGEPress Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3