Angiotensin-(1-7) improves skeletal muscle regeneration

Author:

Valero-Breton MayalenORCID,Tacchi Franco,Abrigo Johanna,Simon Felipe,Cabrera Daniel,Cabello-Verrugio ClaudioORCID

Abstract

Skeletal muscle possesses regenerative potential via satellite cells, compromised in muscular dystrophies leading to fibrosis and fat infiltration. Angiotensin II (Ang-II) is commonly associated with pathological states. In contrast, Angiotensin (1-7) [Ang-(1-7)] counters Ang-II, acting via the Mas receptor. While Ang-II affects skeletal muscle regeneration, the influence of Ang-(1-7) remains to be elucidated. Therefore, this study aims to investigate the role of Ang-(1-7) in skeletal muscle regeneration. C2C12 cells were differentiated in the absence or presence of 10 nM of Ang-(1-7). The diameter of myotubes and protein levels of myogenin and myosin heavy chain (MHC) were determined. C57BL/6 WT male mice 16-18 weeks old) were randomly assigned to injury-vehicle, injury-Ang-(1-7), and control groups. Ang-(1-7) was administered via osmotic pumps, and muscle injury was induced by injecting barium chloride to assess muscle regeneration through histological analyses. Moreover, embryonic myosin (eMHC) and myogenin protein levels were evaluated. C2C12 myotubes incubated with Ang-(1-7) showed larger diameters than the untreated group and increased myogenin and MHC protein levels during differentiation. Ang-(1-7) administration enhances regeneration by promoting a larger diameter of new muscle fibers. Furthermore, higher numbers of eMHC (+) fibers were observed in the injured-Ang-(1-7), which also had a larger diameter. Moreover, eMHC and myogenin protein levels were elevated, supporting enhanced regeneration due to Ang-(1-7) administration. Ang-(1-7) effectively promotes differentiation in vitroand improves muscle regeneration in the context of injuries, with potential implications for treating muscle-related disorders.

Publisher

PAGEPress Publications

Subject

Cell Biology,Neurology (clinical),Molecular Biology,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3