X-ray fluorescence determination of small quantities of hafnium in nuclear pure zirconium materials

Author:

Varkentin N. Ya.1,Vinokurov E. G.2,Karavaeva O. A.1,Bortnikova U. V.1

Affiliation:

1. JSC Chepetsk Mechanical Plant

2. D. I. Mendeleyev University of Chemical Technology of Russia

Abstract

An important chemical impurity in the composition of zirconium materials for nuclear power engineering is hafnium, the content of which should not exceed 0.05 and 0.01% for domestic and foreign alloy grades, respectively. Hafnium, being an analogue of zirconium in its chemical properties, is difficult to be analyzed using classical methods of analytical chemistry. Among the physical methods, the X-ray fluorescence method is the most expressive, which is important in conditions of continuous production. The method of X-ray fluorescence for measuring the content of hafnium in zirconium-containing material has been tested on the example of potassium fluorozirconate, a precursor for obtaining alloys. With various combinations of crystal analyzers, detectors, and collimators of the wave-dispersive spectrometer, the ratios of the intensities of the analytical lines of Hf and Zr in the second order of reflection were refined, and the degree of decrease in the fluorescence intensity of those lines was determined. The X-ray fluorescence spectra of hafnium lines in potassium fluorozirconate at the content characteristic of nuclear-pure zirconium are studied. The possibility of recording the intensity of the Hf analytical lines and methods of eliminating the interference from the Zr lines in the second order of reflection are considered. The metrological characteristics are calculated for Hf analytical lines. It is shown that the smallest error and the lowest detection limit (0.001%) is provided when using the HfLβ1 line at certain settings of the wave-dispersive spectrometer, including the X-ray tube operation mode, a combination of a crystal analyzer, a detector and a collimator, as well as the amplitude discriminator settings. The method of accounting for the background is recommended. The proposed method of hafnium determination is applicable to the materials with a constant content of zirconium.

Publisher

TEST-ZL Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3