Calculation of the stress-strain state of layers of cross-ply laminate based on an experimental stress-strain curves under uniaxial tension

Author:

Polovyi A. O.1,Lisachenko N. G.1

Affiliation:

1. A. G. Romashin ORPE Tekhnologiya

Abstract

A method for calculating the stress-strain state of layers of cross-ply laminate based on an experimental deformation diagram under uniaxial tension is proposed. The essence of the method consists in solving a system of two equations describing the experimental curves σx = f(εx) and σx = f(εy), which allows determination of two unknown parameters related to the secant elastic characteristics of the material layers. The law of change in the remaining unknown parameters is set by assumptions regarding deformation of the polymer matrix composite and its layers during loading. To carry out the calculation, it is necessary to set the initial values of the elastic properties of the unidirectional material of the layers, which should be well consistent with the initial values of the elastic properties of the structure under study determined from the experiment. According to the developed algorithm, calculated dependences between average stresses, deformations and secant elastic properties of the layers of the structure are obtained (0°/90°/90°/0°) made of fiberglass E-Glass/MY750 using experimental data from the literature. Calculations carried out for three sets of initial values of the elastic properties of the material under study showed qualitatively identical results. The transverse tensile stress in the 90° layer reaches a maximum in the first half of the stress-strain diagram, and then decreases to zero. A similar stress in the 0° layer reaches a maximum at the failure point of the structure under study. It is revealed that the maximum calculated values of transverse stresses acting in layers 0° and 90° noticeably exceed the transverse tensile strength of the material specified in the literature. The longitudinal tensile stress in the 0° layer reaches a maximum at the failure point and corresponds to 95% of the value of the longitudinal tensile strength of the material. The longitudinal compressive stress in the 90° layer is at a low level throughout the deformation process of the structure under study. The results of this study can be recommended for developing models of the behavior of layers with cracks in the matrix when loading a polymer matrix composite.

Publisher

TEST-ZL Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3