IMPROVING THE SURFACE PROPERTIES OF INCONEL 718 BY APPLYING A CO2 LASER HEAT TREATMENT TO A HIGH-VELOCITY OXY-FUEL COATING OF WC-CrCo POWDER

Author:

CHO T. Y.1,YOON J. H.1,JOO Y. K.1,ZHANG S. H.1,CHO J. Y.1,KANG J. H.1,CHUN H. G.2,KWON S. C.3,LI MING-XI4

Affiliation:

1. School of Nano Advanced Materials Engineering, Changwon National University, Changwon, 641-773, Republic of Korea

2. School of Materials Science and Engineering, University of Ulsan, Ulsan, 680-741, Republic of Korea

3. Korea Institute of Materials Science, Changwon 641-010, Republic of Korea

4. School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China

Abstract

A micron-sized WC-CrCo powder was coated onto an IN718 substrate using high-velocity oxy-fuel (HVOF) thermal spraying. To further improve the surface properties, the HVOF coating was heat-treated by a CO2 laser. The surface properties of both the coating and the laser-heated coating were then compared. The HVOF optimal coating process (OCP) for a coating with the highest surface hardness was determined with the Taguchi program. The friction and wear behaviors of the coating, an electrolytic hard chrome (EHC)-plated coating and IN718, were comparatively investigated via a reciprocating sliding wear test at both 25 and 450°C. The friction coefficient (FC) for all three samples decreased when the sliding surface temperature increased from 25 to 450°C. The FC of the coating decreased with increasing surface temperature: 0.33 ± 0.02 at 25°C to 0.26 ± 0.02 at 450°C; the coating had the lowest FC among the three samples. At both temperatures, the coating wear depth (WD) was smaller than those of the EHC sample and IN718. At room temperature, WC-CrCo and the EHC coatings had good wear resistance and had only a shallow WD. IN718, however, had poor wear resistance with 50 μm deep grooves created from fretting corrosion that arose during the 1500 reciprocating slides (2.5 Hz, 10 min sliding wear test). At 450°C, the coating WDs were much shallower than those for the EHC coating and IN718: 0.5-μm deep grooves compared to 60–70-μm deep grooves. These results proved that the coating provided a protective coating for IN718 and other metal components. With the OCP coating fabricated from the powders on the IN718 surface, the surface hardness increased 316% from 399 Hv to 1260 Hv. Furthermore, by laser heating the coating surface for 0.6 s, the hardness increased 44% from 1260 ±30 Hv to 1820 ±100 Hv, porosity decreased more than five times from 2.2 ± 0.3% to 0.4 ± 0.1%, and the coating thickness decreased 17% from 300 to 250 μm. These results showed that both the WC-CrCo powder coating and the laser-heating improved the surface properties of IN718.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3