Affiliation:
1. Department of Medical Imaging Techniques, Kutahya Health Sciences University, TR-43500 Kutahya, Turkey
Abstract
We investigate the dynamics of a composite system ([Formula: see text]) consisting of an interacting fermion–antifermion pair in the three-dimensional space–time background generated by a static point source. By considering the interaction between the particles as Dirac oscillator coupling, we analyze the effects of space–time topology on the energy of such a [Formula: see text]. To achieve this, we solve the corresponding form of a two-body Dirac equation (fully-covariant) by assuming the center-of-mass of the particles is at rest and locates at the origin of the spatial geometry. Under this assumption, we arrive at a nonperturbative energy spectrum for the system in question. This spectrum includes spin coupling and depends on the angular deficit parameter [Formula: see text] of the geometric background. This provides a suitable basis to determine the effects of the geometric background on the energy of the [Formula: see text] under consideration. Our results show that such a [Formula: see text] behaves like a single quantum oscillator. Then, we analyze the alterations in the energy levels and discuss the limits of the obtained results. We show that the effects of the geometric background on each energy level are not same and there can be degeneracy in the energy levels for small values of the [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献