Light charged Higgs search with deviation neural networks

Author:

Doğan Hatice1,Sönmez Nasuf2,Özkan Alkım Şükrü1,Demir Güleser Kalaycı1

Affiliation:

1. Department of Electrical and Electronics Engineering, Dokuz Eylul University, 35390 Izmir, Turkey

2. Department of Physics, Ege University, 35040 Izmir, Turkey

Abstract

In particle physics, search for signals of new particles in the proton–proton collisions is an ongoing effort. The energies and luminosities have reached a level where new search techniques are becoming a necessity. In this work, we develop a search technique for light-charged Higgs boson (nearly degenerate with [Formula: see text]-boson), which is extremely hard to do with the traditional cut-based methods. To this end, we employ a deep anomaly detection approach to extract the signal (light-charged Higgs particle) from the vast [Formula: see text]-boson background. We construct a Deviation Network (DevNet) to directly obtain anomaly scores used to identify signal events using background data and few labeled signal data. Our results show that DevNet is able to find regions of high efficiency and gives better performance than the autoencoders, the classic semi-supervised anomaly detection method. It shows that employing Deviation Networks in particle physics can provide a distinct and powerful approach to search for new particles.

Funder

TUBITAK

Publisher

World Scientific Pub Co Pte Ltd

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3