A torsional thrust stand for measuring the thrust response time of micro-Newton thrusters

Author:

Yang Chao12,He Jian-Wu12,Duan Li12,Kang Qi12,

Affiliation:

1. Center for Gravitational Wave Experiment, National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences (CAS), Beijing 100190, China

2. Taiji Laboratory for Gravitational Wave Universe (Beijing/Hangzhou), University of Chinese Academy of Sciences (UCAS), Beijing 100049, China

Abstract

Drag-free technology functions as the keystone for space-based gravitational wave detection satellites moving along a geodesic path, like the Laser Interferometer Space Antenna (LISA) Pathfinder, to achieve ultra-high microgravity level. Several prerequisites for micro-thrusters operated under the drag-free technique include constantly adjustable thrust, high resolution, low noise and fast response time. Accordingly, a torsional thrust measurement system was methodically devised to measure the thrust response time of such micro-thrusters on the ground. The characteristics of the dynamic thrust change with time are inverted by the angular displacement of the torsional pendulum, established by the dynamic equation of the same, thus, measuring the rise/fall time of the thrust applied to the torsional pendulum. Calibration of the torsional pendulum thrust measurement system is carried out by the standard electrostatic force generated by the electrostatic comb-drive or microelectromechanical actuator, facilitating the suitable identification of the pendulum parameters. Afterwards, the electrostatic and electromagnetic forces generated by the actuator are applied to validate the measurable thrust response time of the torsional thrust stand. The experimental results show that the above-mentioned thrust stand can effectively measure the thrust response time up to 10 ms for a thrust step in 10 s of micronewtons, which qualifies as the thrust response time required by micro-thrusters for space-based gravitational wave detection.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3