DYNAMICS OF THE GROUND STATE AND CENTRAL VORTEX STATES IN BOSE–EINSTEIN CONDENSATION

Author:

BAO WEIZHU1,ZHANG YANZHI1

Affiliation:

1. Department of Computational Science, National University of Singapore, Singapore 117543, Singapore

Abstract

In this paper, we study dynamics of the ground state and central vortex states in Bose–Einstein condensation (BEC) analytically and numerically. We show how to define the energy of the Thomas–Fermi (TF) approximation, prove that the ground state is a global minimizer of the energy functional over the unit sphere and all excited states are saddle points in linear case, derive a second-order ordinary differential equation (ODE) which shows that time-evolution of the condensate width is a periodic function with/without a perturbation by using the variance identity, prove that the angular momentum expectation is conserved in two dimensions (2D) with a radial symmetric trap and 3D with a cylindrical symmetric trap for any initial data, and study numerically stability of central vortex states as well as interaction between a few central vortices with winding numbers ±1 by a fourth-order time-splitting sine-pseudospectral (TSSP) method. The merit of the numerical method is that it is explicit, unconditionally stable, time reversible and time transverse invariant. Moreover, it conserves the position density, performs spectral accuracy for spatial derivatives and fourth-order accuracy for time derivative, and possesses "optimal" spatial/temporal resolution in the semiclassical regime. Finally we find numerically the critical angular frequency for single vortex cycling from the ground state under a far-blue detuned Gaussian laser stirrer in strong repulsive interaction regime and compare our numerical results with those in the literatures.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3