A Novel CEEMD-Based EELM Ensemble Learning Paradigm for Crude Oil Price Forecasting

Author:

Tang Ling1,Dai Wei1,Yu Lean1,Wang Shouyang2

Affiliation:

1. School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, P. R. China

2. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China

Abstract

To enhance the prediction accuracy for crude oil price, a novel ensemble learning paradigm coupling complementary ensemble empirical mode decomposition (CEEMD) and extended extreme learning machine (EELM) is proposed. This novel method is actually an improved model under the effective "decomposition and ensemble" framework, especially for nonlinear, complex, and irregular data. In this proposed method, CEEMD, a current extension from the competitive decomposition family of empirical mode decomposition (EMD), is first applied to divide the original data (i.e., difficult task) into a number of components (i.e., relatively easy subtasks). Then, EELM, a recently developed, powerful, fast and stable intelligent learning technique, is implemented to predict all extracted components individually. Finally, these predicted results are aggregated into an ensemble result as the final prediction using simple addition ensemble method. With the crude oil spot prices of WTI and Brent as sample data, the empirical results demonstrate that the novel CEEMD-based EELM ensemble model statistically outperforms all listed benchmarks (including typical forecasting techniques and similar ensemble models with other decomposition and ensemble tools) in prediction accuracy. The results also indicate that the novel model can be used as a promising forecasting tool for complicated time series data with high volatility and irregularity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3