Affiliation:
1. School of Physics, University of Hyderabad, Gachibowli, Hyderabad 500046, India
Abstract
We study the vorticity patterns in relativistic heavy ion collisions with respect to the collision energy. The collision energy is related to the chemical potential used in the thermal — statistical models that assume approximate chemical equilibrium after the relativistic collision. We use the multiphase transport model (AMPT) to study the vorticity in the initial parton phase as well as the final hadronic phase of the relativistic heavy ion collision. We find that as the chemical potential increases, the vortices are larger in size. Using different definitions of vorticity, we find that vorticity plays a greater role at lower collision energies than at higher collision energies. We also look at other effects of the flow patterns related to the shear viscosity at different collision energies. We find that the shear viscosity obtained is almost a constant with a small decrease at higher collision energies. We also look at the elliptic flow as it is related to viscous effects in the final stages after the collision. Our results indicate that the viscosity plays a greater role at higher chemical potential and lower collision energies.
Funder
INSPIRE Fellowship of the Department Science and Technology (DST) Govt. of India
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献