THE INVESTIGATION OF THERMOHYDRODYNAMIC CHARACTERISTIC OF SINGLE AXIAL GROOVE JOURNAL BEARINGS WITH FINITE LENGTH BY USING CFD TECHNIQUES

Author:

SOLGHAR ALIREZA ARAB1,GANDJALIKHAN NASSAB S. A.2

Affiliation:

1. Department of Mechanical Engineering, School of Engineering, Vali-e-Asr University, Rafsanjan, Iran

2. Department of Mechanical Engineering, School of Engineering, Shahid Bahonar University, Kerman, Iran

Abstract

The three-dimensional steady state thermohydrodynamic (THD) analysis of an axial grooved oil journal bearing is obtained theoretically. Navier–Stokes equations are solved simultaneously along with turbulent kinetic energy and its dissipation rate equations coupled with the energy equation in the lubricant flow and the heat conduction equation in the bush. The AKN low-Re κ–ε turbulence model is used to simulate the mean turbulent flow field. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid and the governing equations are transformed into the computational domain. Discretized forms of the transformed equations are obtained by the control volume method and solved by the SIMPLE algorithm. The numerical results of this analysis can be used to investigate the pressure distribution, volumetric oil flow rate and the loci of shaft in the journal bearings. To validate the computational results, comparison with the experimental and theoretical data of other investigators is made, and reasonable agreement is found.

Publisher

World Scientific Pub Co Pte Lt

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiple-relaxation-time lattice Boltzmann method of hydrodynamic lubrication in lemon-bore bearing;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2017-07-06

2. Development and Validation of a Three-Dimensional Computational Fluid Dynamics Analysis for Journal Bearings Considering Cavitation and Conjugate Heat Transfer;Journal of Engineering for Gas Turbines and Power;2015-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3