Weak donor-like effect to enhance the thermoelectric performance of Bi2Te2.79Se0.21 near room temperature

Author:

Liu Xusheng12,Xing Tong2ORCID,Deng Tingting2,Yang Hai1,Wang Lei2,Li Peng2,Fan Jinhui1,Li Xiaoya2,Chen Lidong2

Affiliation:

1. School of Mechanical Engineering, Donghua University, Shanghai 201620, P. R. China

2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China

Abstract

Bismuth telluride-based materials are the most celebrated thermoelectric (TE) materials near room temperature. However, for the n-type bismuth telluride-based materials, the traditional powder metallurgy (PM) method, such as grinding and ball milling, can induce strong donor-like effect. The strong donor-like effect boosts the carrier concentration [Formula: see text] and the carrier thermal conductivity [Formula: see text], leading to the deterioration of both electrical and thermal performance. Herein, the basal deformation (BD) has been performed in the n-type Bi2Te3-based materials to introduce weak donor-like effect. The BD crystalline bulks were obtained through sintering the stacked crystals, which had been heavily deformed on the (00[Formula: see text] plane. The BD process optimizes the carrier concentration [Formula: see text] and improves the power factor (PF). Meanwhile, the lattice thermal conductivity [Formula: see text] is suppressed due to the enhanced grain boundary scattering. Consequently, a peak ZT of 1.0 at 380 K has been achieved in Bi2Te[Formula: see text]Se[Formula: see text], which is 24% and 30% higher than that of the original zone-melting (ZM) ingot and the polycrystalline sample by PM. This study sheds light on the further TE performance enhancement of bismuth telluride-based materials via introducing the weak donor-like effect.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3