Time-Frequency-Domain Copula-Based Granger Causality and Application to Corticomuscular Coupling in Stroke

Author:

She Qingshan1,Zheng Hang1,Tan Tongcai2,Zhang Botao1,Fan Yingle1,Luo Zhizeng1

Affiliation:

1. School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P. R. China

2. Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China

Abstract

The corticomuscular coupling (CMC) characterization between the motor cortex and muscles during motion control is a valid biomarker of motor system function after stroke, which can improve clinical decision-making. However, traditional CMC analysis is mainly based on the coherence method that can’t determine the coupling direction, whereas Granger Causality (GC) is limited in identifying linear cause–effect relationship. In this paper, a time-frequency domain copula-based GC (copula-GC) method is proposed to assess CMC characteristic. The 32-channel electroencephalogram (EEG) signals over brain scalp and electromyography (EMG) signals from upper limb were recorded during controlling and maintaining steady-state force output for five stroke patients and five healthy controls. Then, the time-frequency copula-GC analysis was applied to evaluate the CMC strength in both directions. Experimental results show that the CMC strength of descending direction is greater than that of ascending direction in the time domain for healthy controls. With the increase of grip strength, the bi-directional CMC strength has an increasing trend. Meanwhile, the bi-directional CMC strength of right hand is larger than that of left hand. In addition, the bi-directional CMC strength of stroke patients is lower than that of healthy controls. In the frequency domain, the strongest CMC is observed at the beta frequency band. Additionally, the CMC strength of descending direction is slightly larger than that of ascending direction in healthy controls, while the CMC strength of descending direction is lower than that of ascending direction in stroke patients. We suggest that the proposed time-frequency domain analysis approach based on copula-GC can effectively detect complex functional coupling between cortical oscillations and muscle activities, and provide a potential quantitative analysis measure for motion control and rehabilitation evaluation.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3