Investigating the Thermal Efficiency of Al2O3–Cu–CuO–Cobalt with Engine Oil Tetra-Hybrid Nanofluid with Motile Gyrotactic Microorganisms Under Suction and Injection Scenarios: Response Surface Optimization

Author:

Kumar Maddina Dinesh12ORCID,Dharmaiah Gurram3ORCID,Chamorro Vanessa Fernández1ORCID,Palencia José L. Díaz1ORCID

Affiliation:

1. Department of Mathematics and Education, Universidad a Distancia de Madrid, 28400 Madrid, Spain

2. Department of Mathematics, B V Raju Institute of Technology, Narsapur, Medak, Telangana 502313, India

3. Department of Mathematics, Narasaraopeta Engineering College, Narasaraopet, India

Abstract

Nanofluids, due to their complex behavior and enhanced thermal properties, are utilized across chemical, biotechnology and thermal engineering disciplines. They are particularly integral to heat transfer processes in heavy machinery and vehicles. This study introduces a novel method for analyzing heat transfer within a tetra nanofluid system through a hybrid analytical and numerical approach. Our research primarily examines the dynamics of a magneto Williamson hybrid tetra nanofluid embedded with motile gyrotactic microorganisms. The study is designed around two scenarios: one investigates the behavior of an Al2O3–Cu–CuO–Cobalt/Engine oil nanofluid under suction conditions, and the other under injection conditions. By employing similarity variables, we transform the original fluid flow equations into nonlinear differential equations to further explore the influence of various physical parameters on the fluid’s flow. Such parameters include the nanofluid temperature and velocity as well as the concentration of nanoparticles, and the volume fraction of motile gyrotactic microorganisms. The optimization of the numerical results for skin friction, Nusselt number, Sherwood number and microorganisms concentration is validated through response surface optimization techniques. Additionally, the study utilizes Matlab‘s bvp4c function to examine the thermal efficiency and characteristics of fluid flow across a spectrum of parameter values.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3