A Lightweight Multimodal Footprint Recognition Network Based on Progressive Multi-Granularity Feature Fusion

Author:

Cao Ruike1ORCID,Li Luowei2ORCID,Zhang Yan1ORCID,Wu Jun1ORCID,Zhao Xinyu1ORCID

Affiliation:

1. School of Electronic and Information Engineering, Anhui University, He Fei 230601, P. R. China

2. School of Computer Science, Anhui University, He Fei 230601, P. R. China

Abstract

The main differences in images of footprints are the proportion of the parts of foot and the distribution of pressure, which can be considered as fine-grained image classification. Moreover, the deviation of human body weight and muscle strength increases the difficulty of identifying the left and right feet. While using a fine-grained image classification network to solve the footprint image classification problem is certainly a feasible approach, the number of parameters in a fine-grained image classification network is generally large, and therefore we would like to build a lightweight classification network that is suitable for several small footprint datasets. In this paper, a multimodal footprint recognition algorithm based on progressive multi-granularity feature fusion is proposed. First, the shallow dense connection network is used to extract features. The feature extraction ability of the model is improved with the help of channel splicing and feature multiplexing. Second, to learn footprint images of different granularities, the progressive training strategy and puzzle scrambler are applied to the model. Finally, factorized bilinear coding can aggregate local features to obtain more discriminative global representation features. Experiments show that our network achieves comparable classification accuracy to some fine-grained image classification models (PMG, MSEC) on the complete pressure footprint dataset, but the number of parameters in our network is greatly reduced. Meanwhile, our network also achieves good classification results on several other footprint datasets, which demonstrates the effectiveness of our network. At the same time, an ablation experiment was carried out to verify the effectiveness of the progressive strategy and the factorized bilinear coding.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

University Natural Science Research Project of Anhui Province

Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3