A Method of Interest Degree Mining Based on Behavior Data Analysis

Author:

Li Zhen1ORCID,Xu Shuo2,Wang Tianyu2

Affiliation:

1. School of Architecture and Design, China University of Mining & Technology, Xuzhou, P. R. China

2. School of Computer Sciences and Technology, China University of Mining & Technology, Xuzhou, P. R. China

Abstract

Based on big data, this paper starts from the behavior data of users on social media, and studies and explores the core issues of user modeling under personalized services. Focusing on the goal of user interest modeling, this paper proposes corresponding improvement measures for the existing interest model, which has great difference in interest description among different users and it is difficult to find the user interest change in time. For the above problems, this paper takes user-generated content and user behavior information as the analysis object, and uses natural language processing, knowledge warehouse, data fusion and other methods and techniques to numerically analyze user interest mining based on text mining and multi-source data fusion. We propose a user interest label space mapping method to avoid data sparse problem caused by too many dimensions in interest analysis. At the same time, we propose a method to extract and blend the long-term and short-term interests, and realize the comprehensive evaluation of interests. In the analysis of the big data phase, the user preference social property application preference value law, it is expected to achieve user Internet social media application preference data mining from the perspective of big data.

Funder

Fundamental Research Fund for The Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3