The comparison of alternative spacetimes using the spherical accretion around the black hole

Author:

Donmez Orhan1ORCID

Affiliation:

1. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

Abstract

In the region where the gravitational field is strong, we have examined the influence of different gravities on the accretion disk formed due to spherical accretion. To achieve this, we obtain numerical solutions of the GRH equations, utilizing Schwarzschild, Kerr, Einstein–Gauss–Bonnet, and Hartle–Thorne spacetime metrics. We investigate the impact of the rotation parameter of a black hole ([Formula: see text]), the EGB coupling constant ([Formula: see text]), and the quadrupole moment of the rotating black hole (q) on the accretion disk formed in a strong field. The formation of the disk for the slowly and rapidly rotating black hole models is separately examined, and comparisons are made. Our numerical simulations reveal that, under the specific conditions, the solution derived from Hartle–Thorne gravity converges toward solutions obtained from Kerr and other gravitational models. In the context of the slowly rotating black hole with [Formula: see text], we observe a favorable agreement between the Hartle–Thorne result and the Kerr result within the range of [Formula: see text]. Conversely, in the scenario of the rapidly rotating black hole, a more pronounced alignment with the value of [Formula: see text] is evident within the range of [Formula: see text]. Nevertheless, for [Formula: see text], it becomes apparent that the Hartle–Thorne solution diverges from solutions provided by all gravitational models. Our motivation here is to utilize the Hartle–Thorne spacetime metric for the first time in the numerical solutions of the GRH equations for the black holes, compare the results with those obtained using other gravities, and identify under which conditions the Hartle–Thorne solution is compatible with known black hole spacetime metric solutions. This may allow us to provide an alternative perspective in explaining observed X-ray data.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bondi-Hoyle-Lyttleton accretion around the rotating hairy Horndeski black hole;Journal of Cosmology and Astroparticle Physics;2024-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3