NOISE IN NEURAL NETWORKS — IN TERMS OF RELATIONS

Author:

LILJENSTRÖM HANS12,HALNES GEIR12

Affiliation:

1. Dept. of Biometry and Engineering, SLU, P.O. Box 7013, S-750 07 Uppsala, Sweden

2. Agora for Biosystems, P.O. Box 57, SE-193 22 Sigtuna, Sweden

Abstract

The issue of noise in biological systems is primarily a question of relations: between order and disorder, between stability and flexibility, and between processes at different temporal and spatial scales. In this paper, we use computational models of cortical structures to investigate relations between structure, dynamics, and function of such systems. In particular, we investigate the nature and role of noise at different organizational levels of the nervous system, emphasizing the neural network level. We show that microscopic noise can induce global network oscillations and pseudo-chaos, which make neural information processing more efficient. We find optimal noise levels for which the convergence to stored memory attractor states reaches a maximum, akin to stochastic resonance. We finally discuss the relation between neural and mental processes, and how computational models may relate to real neural systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inducing transitions in mesoscopic brain dynamics;Modeling Phase Transitions in the Brain;2009-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3