Hair follicles as a target structure for nanoparticles

Author:

Lademann J.1,Knorr F.1,Richter H.1,Jung S.1,Meinke M. C.1,Rühl E.2,Alexiev U.3,Calderon M.2,Patzelt A.1

Affiliation:

1. Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany

2. Physical Chemistry, Institute of Chemistry, and Biochemistry, Freie Universität Berlin Takustr. 3, Berlin 14195, Germany

3. Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany

Abstract

For at least two decades, nanoparticles have been investigated for their capability to deliver topically applied substances through the skin barrier. Based on findings that nanoparticles are highly suitable for penetrating the blood–brain barrier, their use for drug delivery through the skin has become a topic of intense research. In spite of the research efforts by academia and industry, a commercial product permitting the nanoparticle-assisted delivery of topically applied drugs has not yet been developed. However, nanoparticles of approximately 600 nm in diameter have been shown to penetrate efficiently into the hair follicles, where they can be stored for several days. The successful loading of nanoparticles with drugs and their triggered release inside the hair follicle may present an ideal method for localized drug delivery. Depending on the particle size, such a method would permit targeting specific structures in the hair follicles such as stem cells or immune cells or blood vessels found in the vicinity of the hair follicles.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3