A microvascular image analysis method for optical-resolution photoacoustic microscopy

Author:

Zhao Jingxiu1,Zhao Qian1,Lin Riqiang2,Meng Jing1ORCID

Affiliation:

1. School of Information Science and Engineering, Qufu Normal University, 80 Yantai Road North, Rizhao 276826, P. R. China

2. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Institute of Biomedical and Health Engineering, 1068 Xueyuan Avenue, Shenzhen 518055, P. R. China

Abstract

Optical-resolution photoacoustic microscopy (OR-PAM) has been shown to be an excellent tool for high-resolution imaging of microvasculature, and quantitative analysis of the microvasculature can provide valuable information for the early diagnosis and treatment of various vascular-related diseases. In order to address the characteristics of weak signals, discontinuity and small diameters in photoacoustic microvascular images, we propose a method adaptive to the microvascular segmentation in photoacoustic images, including Hessian matrix enhancement and the morphological connection operators. The accuracy of our vascular segmentation method is quantitatively evaluated by the multiple criteria. To obtain more precise and continuous microvascular skeletons, an improved skeleton extraction framework based on the multistencil fast marching (MSFM) method is developed. We carried out in vivo OR-PAM microvascular imaging in mouse ears and subcutaneous hepatoma tumor model to verify the correctness and superiority of our proposed method. Compared with the previous methods, our proposed method can extract the microvascular network more completely, continuously and accurately, and provide an effective solution for the quantitative analysis of photoacoustic microvascular images with many small branches.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3