In vivo measurement of NADH fluorescence lifetime in skeletal muscle via fiber-coupled time-correlated single photon counting

Author:

Priest Kathryn M.1ORCID,Schluns Jacob V.1,Nischal Nathania1,Gattis Colton L.1,Wolchok Jeffrey C.1ORCID,Muldoon Timothy J.1ORCID

Affiliation:

1. Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA

Abstract

Nicotinamide adenine dinucleotide (NADH) is a cofactor that serves to shuttle electrons during metabolic processes such as glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation (OXPHOS). NADH is autofluorescent, and its fluorescence lifetime can be used to infer metabolic dynamics in living cells. Fiber-coupled time-correlated single photon counting (TCSPC) equipped with an implantable needle probe can be used to measure NADH lifetime in vivo, enabling investigation of changing metabolic demand during muscle contraction or tissue regeneration. This study illustrates a proof of concept for point-based, minimally-invasive NADH fluorescence lifetime measurement in vivo. Volumetric muscle loss (VML) injuries were created in the left tibialis anterior (TA) muscle of male Sprague Dawley rats. NADH lifetime measurements were collected before, during, and after a 30[Formula: see text]s tetanic contraction in the injured and uninjured TA muscles, which was subsequently fit to a biexponential decay model to yield a metric of NADH utilization (cytoplasmic vs protein-bound NADH, the A[Formula: see text]/A[Formula: see text] ratio). On average, this ratio was higher during and after contraction in uninjured muscle compared to muscle at rest, suggesting higher levels of free NADH in contracting and recovering muscle, indicating increased rates of glycolysis. In injured muscle, this ratio was higher than uninjured muscle overall but decreased over time, which is consistent with current knowledge of inflammatory response to injury, suggesting tissue regeneration has occurred. These data suggest that fiber-coupled TCSPC has the potential to measure changes in NADH binding in vivo in a minimally invasive manner that requires further investigation.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3