ε-Nash Equilibrium of Pursuer–Evader–Defender Missile Navigation Dynamic Games

Author:

Noriega-Marquez Sebastian1ORCID,Hernandez-Sanchez Alejandra2ORCID,Chairez Isaac3ORCID,Poznyak Alexander1ORCID

Affiliation:

1. Departamento de Control Automático Centro de Investigacion y, Estudios Avanzados del IPN (CINVESTAV-IPN), Gustavo A. Madero, 47368 Ciudad de México, CDMX, Mexico

2. Institute of Advanced Materials for Sustainable Manufacturing Tecnológico de Monterrey, 14380 Ciudad de México, CDMX, Mexico

3. Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, 45210 Zapopan, JA, Mexico

Abstract

This research is dedicated to developing a min–max robust control strategy for a dynamic game involving pursuers, evaders, and defenders in a multiple-missile scenario. The approach employs neural dynamic programming, utilizing multiple continuous differential neural networks (DNNs). The competitive controller devised addresses the robust optimization of a joint cost function that relies on the trajectories of the pursuer–evader–defender system, accommodating an uncertain mathematical model while adhering to control restrictions. The dynamic programming min–max formulation facilitates robust control by accounting for bounded modeling uncertainties and external disturbances for each game component. The value function of the Hamilton–Jacobi–Bellman (HJB) equation is approximated by a DNN, enabling the estimation of the closed-loop formulation for the joint dynamic game with state restrictions. The controller’s design is grounded in estimating the state trajectory under the worst possible uncertainties and perturbations, providing a robustness factor through the robust neural controller. The learning law class for the time-varying weights in the DNN is generated by studying the HJB partial differential equation for the missile motion for each player in the dynamic game. The controller incorporates the solution of the obtained learning laws and a time-varying Riccati equation, offering an online solution to the control implementation. A recurrent algorithm, based on the Kiefer–Wolfowitz method, adjusts the initial conditions for the weights to satisfy the final condition of the given cost function for the dynamic game. A numerical example is presented to validate the proposed robust control methodology, confirming the optimization solution based on the DNN approximation for Bellman’s value function.

Funder

Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey under the Grant Challenge-Based Research Funding Program 2022

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3