Affiliation:
1. State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract
Under investigation in this paper is a generalized variable-coefficient Boussinesq system, which describes the propagation of the shallow water waves in the two-layered fluid flow. Bilinear forms, Bäcklund transformation and Lax pair are derived by virtue of the Bell polynomials. Hirota method is applied to construct the one- and two-soliton solutions. Propagation and interaction of the solitons are illustrated graphically: kink- and bell-shape solitons are obtained; shapes of the solitons are affected by the variable coefficients [Formula: see text], [Formula: see text] and [Formula: see text] during the propagation, kink- and anti-bell-shape solitons are obtained when [Formula: see text], anti-kink- and bell-shape solitons are obtained when [Formula: see text]; Head-on interaction between the two bidirectional solitons, overtaking interaction between the two unidirectional solitons are presented; interactions between the two solitons are elastic.
Funder
National Natural Science Foundation of China
Open Fund of State Key Laboratory of Information Photonics and Optical Communications
Fundamental Research Funds for the Central Universities of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献