Affiliation:
1. School of Civil Engineering, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing 100044, China
Abstract
At present, the detection of urban community structures is mainly based on existing administrative divisions, and is performed using qualitative methods. The lack of quantitative methods makes it difficult to judge the rationality of urban community divisions. In this study, we used complex network association mining methods to detect a city community structure by using the Origin-Destinations (OD) at traffic analysis zone (TAZ) level, and successively assigned all the TAZs into different communities. Based on the community results, we calculated the community core degree of each TAZ within every community, and then calculated the Traffic Core Degree and Location Core Degree indicators of the community based on OD passenger flow and spatial location relationship between communities. Finally, we analyzed the correlation among three indicators to ensure the rationality of the community structure. We used the city of Zhengzhou in 2016 as an example case study. For Zhengzhou, we detected a total of six communities. We found a relatively low correlation between Traffic Core Degree and Location Core Degree. Within each group, the correlation between community core degree and Traffic Core Degree was higher than that between community core degree and Location Core Degree, indicating that the urban community structure is more reasonably based on traffic characteristics. The development of a quantitative approach for determining reasonable city community structures has important implications for transportation planning and industrial layout.
Funder
Beijing Natural Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献