ANISOTROPIC MAGNETORESISTANCE IN PEROVSKITE MANGANITES

Author:

EGILMEZ M.12,CHOW K. H.2,JUNG J. A.2

Affiliation:

1. Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom

2. Department of Physics, University of Alberta, Edmonton, T6G 2G7, Canada

Abstract

We have summarized some important results of the anisotropic transport properties of the prototypical manganite La 1-x Ca x MnO 3 as well as a few others. The temperature dependence of anisotropic magnetoresistance in manganites exhibits a peak near the magnetic ordering temperature which differs dramatically from the ones in 3d ferromagnetic metals and alloys. Depending on the strain-driven orbital state, the AMR in manganites could be enhanced dramatically. The AMR in manganites is much larger than in ferromagnetic metals, where its magnitude is only of the order of a few percent. At low fields (below few kG) the intrinsic magnetocrystalline anisotropy becomes important and the dependence of resistance on angle changes to a more switching-like behavior. The magnitude of the switching is sufficiently large such that this phenomenon could be useful in spintronics for magnetic field sensing and nonvolatile memory applications. Moreover, at temperatures far below the metal insulator transition temperatures, the AMR in LCMO/LAO also flips and changes a sign in contrast to LCMO/STO films. Also sign flip takes place in charge and orbital ordered manganites exhibiting field induced ferromagnetism. Polycrystalline manganite samples also exhibit strong AMR. At lower temperatures the dependence of the AMR on temperature is dramatically different in polycrystalline samples than the epitaxial or single crystal samples. The behavior in the the polycrystalline samples could be governed by spin-polarized transport across the grain boundaries.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3