HIGH-DIMENSIONAL PORTFOLIO OPTIMIZATION WITH TRANSACTION COSTS

Author:

BROADIE MARK1,SHEN WEIWEI2

Affiliation:

1. Graduate School of Business, Columbia University, New York, NY 10027, USA

2. Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA

Abstract

This paper studies Merton’s portfolio optimization problem with proportional transaction costs in a discrete-time finite horizon. Facing short-sale and borrowing constraints, investors have access to a risk-free asset and multiple risky assets whose returns follow a multivariate geometric Brownian motion. Lower and upper bounds for optimal solutions up to the problem with 20 risky assets and 40 investment periods are computed. Three lower bounds are proposed: the value function optimization (VF), the hyper-sphere and the hyper-cube policy parameterizations (HS and HC). VF attacks the conundrums in traditional value function iteration for high-dimensional dynamic programs with continuous decision and state spaces. HS and HC respectively approximate the geometry of the trading policy in the high-dimensional state space by two surfaces. To evaluate lower bounds, two new upper bounds are provided via a duality method based on a new auxiliary problem (OMG and OMG2). Compared with existing methods across various suites of parameters, new methods lucidly show superiority. The three lower bound methods always achieve higher utilities, HS and HC cut run times by a factor of 100, and OMG and OMG2 mostly provide tighter upper bounds. In addition, how the no-trading region characterizing the optimal policy deforms when short-sale and borrowing constraints bind is investigated.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Economics, Econometrics and Finance,Finance

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical solutions to dynamic portfolio problems with upper bounds;Computational Management Science;2017-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3