Deep Ensemble of Classifiers for Alzheimer’s Disease Detection with Optimal Feature Set

Author:

Rajasree R. S.12,Rajakumari S. Brintha12

Affiliation:

1. Department of Computer Science and Engineering, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, Tamil Nadu, India

2. Department of Computer Science, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, Tamil Nadu, India

Abstract

Machine learning (ML) and deep learning (DL) techniques can considerably enhance the process of making a precise diagnosis of Alzheimer’s disease (AD). Recently, DL techniques have had considerable success in processing medical data. They still have drawbacks, like large data requirements and a protracted training phase. With this concern, we have developed a novel strategy with the four stages. In the initial stage, the input data is subjected to data imbalance processing, which is crucial for enhancing the accuracy of disease detection. Subsequently, entropy-based, correlation-based, and improved mutual information-based features will be extracted from these pre-processed data. However, the curse of dimensionality will be a serious issue in this work, and hence we have sorted it out via optimization strategy. Particularly, the tunicate updated golden eagle optimization (TUGEO) algorithm is proposed to pick out the optimal features from the extracted features. Finally, the ensemble classifier, which integrates models like CNN, DBN, and improved RNN is modeled to diagnose the diseases by training the selected optimal features from the previous stage. The suggested model achieves the maximum F-measure as 97.67, which is better than the extant methods like [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], respectively. The suggested TUGEO-based AD detection is then compared to the traditional models like various performance matrices including accuracy, sensitivity, specificity, and precision.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3