Combining EEG Features and Convolutional Autoencoder for Neonatal Seizure Detection

Author:

Wang Yuxia1ORCID,Yuan Shasha1ORCID,Liu Jin-Xing1ORCID,Hu Wenrong1ORCID,Jia Qingwei1ORCID,Xu Fangzhou2ORCID

Affiliation:

1. School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China

2. School of Electronic and Information Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China

Abstract

Neonatal epilepsy is a common emergency phenomenon in neonatal intensive care units (NICUs), which requires timely attention, early identification, and treatment. Traditional detection methods mostly use supervised learning with enormous labeled data. Hence, this study offers a semi-supervised hybrid architecture for detecting seizures, which combines the extracted electroencephalogram (EEG) feature dataset and convolutional autoencoder, called Fd-CAE. First, various features in the time domain and entropy domain are extracted to characterize the EEG signal, which helps distinguish epileptic seizures subsequently. Then, the unlabeled EEG features are fed into the convolutional autoencoder (CAE) for training, which effectively represents EEG features by optimizing the loss between the input and output features. This unsupervised feature learning process can better combine and optimize EEG features from unlabeled data. After that, the pre-trained encoder part of the model is used for further feature learning of labeled data to obtain its low-dimensional feature representation and achieve classification. This model is performed on the neonatal EEG dataset collected at the University of Helsinki Hospital, which has a high discriminative ability to detect seizures, with an accuracy of 92.34%, precision of 93.61%, recall rate of 98.74%, and F1-score of 95.77%, respectively. The results show that unsupervised learning by CAE is beneficial to the characterization of EEG signals, and the proposed Fd-CAE method significantly improves classification performance.

Funder

The University of Shandong Province in China

The National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Introduce Innovative Teams of 2021 “New High School twenty Items”

Talent Training and Teaching Reform Project of Qilu University of Technology in 2022

Publisher

World Scientific Pub Co Pte Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3