Affiliation:
1. School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
2. School of Electronic and Information Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
Abstract
Neonatal epilepsy is a common emergency phenomenon in neonatal intensive care units (NICUs), which requires timely attention, early identification, and treatment. Traditional detection methods mostly use supervised learning with enormous labeled data. Hence, this study offers a semi-supervised hybrid architecture for detecting seizures, which combines the extracted electroencephalogram (EEG) feature dataset and convolutional autoencoder, called Fd-CAE. First, various features in the time domain and entropy domain are extracted to characterize the EEG signal, which helps distinguish epileptic seizures subsequently. Then, the unlabeled EEG features are fed into the convolutional autoencoder (CAE) for training, which effectively represents EEG features by optimizing the loss between the input and output features. This unsupervised feature learning process can better combine and optimize EEG features from unlabeled data. After that, the pre-trained encoder part of the model is used for further feature learning of labeled data to obtain its low-dimensional feature representation and achieve classification. This model is performed on the neonatal EEG dataset collected at the University of Helsinki Hospital, which has a high discriminative ability to detect seizures, with an accuracy of 92.34%, precision of 93.61%, recall rate of 98.74%, and F1-score of 95.77%, respectively. The results show that unsupervised learning by CAE is beneficial to the characterization of EEG signals, and the proposed Fd-CAE method significantly improves classification performance.
Funder
The University of Shandong Province in China
The National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Introduce Innovative Teams of 2021 “New High School twenty Items”
Talent Training and Teaching Reform Project of Qilu University of Technology in 2022
Publisher
World Scientific Pub Co Pte Ltd
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献