Enhancing Prediction of Forelimb Movement Trajectory through a Calibrating-Feedback Paradigm Incorporating RAT Primary Motor and Agranular Cortical Ensemble Activity in the Goal-Directed Reaching Task

Author:

Wang Han-Lin1,Kuo Yun-Ting1,Lo Yu-Chun2,Kuo Chao-Hung3,Chen Bo-Wei1,Wang Ching-Fu14,Wu Zu-Yu1,Lee Chi-En1,Yang Shih-Hung5,Lin Sheng-Huang67,Chen Po-Chuan8,Chen You-Yin12

Affiliation:

1. Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan

2. The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 235235, Taiwan

3. Department of Neurosurgery, Neurological Institute Taipei Veterans General Hospital, No. 201, Sec. 2  Shipai Rd., Taipei 11217, Taiwan

4. Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan

5. Department of Mechanical Engineering, National Cheng Kung University, No. 1, University Rd., Tainan 70101, Taiwan

6. Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3 Zhongyang Rd., Hualien 97002, Taiwan

7. Department of Neurology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan

8. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Complete reaching movements involve target sensing, motor planning, and arm movement execution, and this process requires the integration and communication of various brain regions. Previously, reaching movements have been decoded successfully from the motor cortex (M1) and applied to prosthetic control. However, most studies attempted to decode neural activities from a single brain region, resulting in reduced decoding accuracy during visually guided reaching motions. To enhance the decoding accuracy of visually guided forelimb reaching movements, we propose a parallel computing neural network using both M1 and medial agranular cortex (AGm) neural activities of rats to predict forelimb-reaching movements. The proposed network decodes M1 neural activities into the primary components of the forelimb movement and decodes AGm neural activities into internal feedforward information to calibrate the forelimb movement in a goal-reaching movement. We demonstrate that using AGm neural activity to calibrate M1 predicted forelimb movement can improve decoding performance significantly compared to neural decoders without calibration. We also show that the M1 and AGm neural activities contribute to controlling forelimb movement during goal-reaching movements, and we report an increase in the power of the local field potential (LFP) in beta and gamma bands over AGm in response to a change in the target distance, which may involve sensorimotor transformation and communication between the visual cortex and AGm when preparing for an upcoming reaching movement. The proposed parallel computing neural network with the internal feedback model improves prediction accuracy for goal-reaching movements.

Funder

Taiwan National Science and Technology Council

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3