Multiscale Simulation of the Coupled Chemo-Mechanical Behavior of Porous Electrode Materials by Direct FE2 Method

Author:

Lan Yizhou1ORCID,Ma Lianhua2ORCID,Du Xiyan1ORCID,Zhou Wei1ORCID

Affiliation:

1. Non-destructive Testing Laboratory, School of Quality and Technical Supervision, Hebei University, Baoding 071002, P. R. China

2. Research Institute of Interdisciplinary Science, School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, P. R. China

Abstract

Application of porous electrode materials has sparked significant interest as a strategy to mitigate traditional electrode mechanical failure arising from its intercalation-induced large volume change. In this work, a thermal analogy method is employed for implementing the coupled chemo-mechanical model into the finite element (FE) package ABAQUS via user subroutines UMATHT and UMAT, which is used to model the lithium (Li) diffusion and the resulting deformation of the electrode during charge-discharge cycling. This work presents a Direct FE2 method for modeling the chemo-mechanically coupled behavior of porous electrode materials by establishing the macro-microscopic scale transitions through concentration and displacement DOFs and the representative volume element (RVE) volume scaling relationship. The two-scale numerical simulations can be implemented in a single computational scheme. Within the present computational framework, the Li diffusion and mechanical deformation in the porous silicon electrode during charging and discharging are easily simulated in the typical FE package. Benchmarked against the traditional direct full-field numerical computational method, the Direct FE2 method is validated to present significant computational efficiency improvements through two numerical examples, the constrained expansion and the pre-compression expansion of porous electrode, by 99.27% and 94.55%, respectively, while maintaining the high precision.

Funder

National Natural Science Foundation of China

Innovation Team of Nonde-structive Testing Technology and Instrument, Hebei University

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3