HYPERMATRIX ALGEBRA AND IRREDUCIBLE ARITY IN HIGHER-ORDER SYSTEMS: CONCEPTS AND PERSPECTIVES

Author:

ZAPATA-CARRATALÁ CARLOS1ORCID,SCHICH MAXIMILIAN2ORCID,BEYNON TALIESIN3,ARSIWALLA XERXES D.4ORCID

Affiliation:

1. Wolfram Institute, Champaign 61820-7237, Illinois, USA

2. ERA Chair for Cultural Data Analytics, Baltic Film, Media and Arts School, Tallinn University, Narva mnt 25, 10120, Tallinn, Estonia

3. Mathematics Department, University of Cape Town, Woolsack Drive, 7701, Western Cape, South Africa

4. Wolfram Research, Champaign 61820-7237, Illinois, USA

Abstract

Theoretical and computational frameworks of complexity science are dominated by binary structures. This binary bias, seen in the ubiquity of pair-wise networks and formal binary operations in mathematical models, limits our capacity to faithfully capture irreducible polyadic interactions in higher-order systems. A paradigmatic example of a higher-order interaction is the Borromean link of three interlocking rings. In this paper, we propose a mathematical framework via hypergraphs and hypermatrix algebras that allows to formalize such forms of higher-order bonding and connectivity in a parsimonious way. Our framework builds on and extends current techniques in higher-order networks — still mostly rooted in binary structures such as adjacency matrices — and incorporates recent developments in higher-arity structures to articulate the compositional behavior of adjacency hypermatrices. Irreducible higher-order interactions turn out to be a widespread occurrence across natural sciences and socio-cultural knowledge representation. We demonstrate this by reviewing recent results in computer science, physics, chemistry, biology, ecology, social science, and cultural analysis through the conceptual lens of irreducible higher-order interactions. We further speculate that the general phenomenon of emergence in complex systems may be characterized by spatio-temporal discrepancies of interaction arity.

Funder

National Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the operator origins of classical and quantum wave functions;Quantum Studies: Mathematics and Foundations;2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3