Theoretical investigation and optimization of rotation sensing in the new photonic crystal gyroscope based on the Sagnac effect using nonlinear photonic resonators

Author:

Mohammadi Masoud1ORCID,Seifouri Mahmood1ORCID,Olyaee Saeed2ORCID

Affiliation:

1. Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

2. Nano-photonics and Optoelectronics Research Laboratory (NORLab), Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

In this research, the angular rotation speed in a passive photonic gyroscope based on the combination of side nanoring resonators and compensating waveguides has been analyzed by creating nonlinear effects in the control factors of the rings using the Sagnac effect. This structure consists of a central waveguide, two identical square resonators, and an almost U-shaped waveguide. The U-shaped waveguide causes coupling between the two resonators in a counterclockwise (CCW) mode. In this structure, a phase shift has been created in the output from the interference of two clockwise (CW) and CCW waves inside the resonators, and according to this phase shift and the central wavelength, the angular rotation speed has been estimated. In the proposed design of the gyroscope, by managing the nonlinear effects in the radius and refractive index (RI) of the coupling and inner rods, we have been able to control the changes in power, phase, and wavelength of the output from the device. With the increase in the intensity of power, the output power has an increasing slope at first, and at the point of creating a nonlinear effect in the sensor, the output power slope decreases. Also, this nonlinear effect directly affects the output phase of the structure. The maximum angular rotation speed in this gyroscope was [Formula: see text]/s. By changing the RI of the inner rods from 3.2 to 3.7, the maximum output-to-input power ratio changes from 0.38 W/[Formula: see text]m2 to 0.75 W/[Formula: see text]m2. By changing the radius of the coupling rods from 93 nm to 97 nm, the maximum power ratio decreases from 0.78 W/[Formula: see text]m2 to 0.55 W/[Formula: see text]m2. The field distribution profile and photonic bandgap in this gyroscope have been analyzed using the finite-difference time-domain (FDTD) and plane-wave expansion (PWE) methods, respectively. Also, the gyroscope has a footprint of 163.5 [Formula: see text]m2.

Funder

Shahid Rajaee Teacher Training University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3