Dynamics of ternary nanofluid through radiated sensor surface: Numerical investigation

Author:

Ullah Basharat12ORCID,Afzal Umair3,Khan Umar3ORCID,Muhammad Taseer4ORCID

Affiliation:

1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China

2. Department of Mathematics, Mohi-ud-Din Islamic University, Nerian Sharif AJ&K, Pakistan

3. Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan

4. Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia

Abstract

Application: The impact of flow, heat transfer, and magneto hydrodynamics on sensor surfaces between two parallel compressing plates with porous walls has been examined in this study. This study focuses on understanding unsteady compressed flow in two dimensions, utilizing Aluminum oxide, copper oxide, and titanium dioxide with base fluid polymers as the base fluid. Nanofluids, known as nanometer suspensions in traditional nanoscale fluid transfer, are explored for their potential application in improving lubricative and cooling properties. Purpose and methodology: This study aims to investigate the behavior of a tri-hybrid nanofluid (Aluminum oxide, copper oxide, and titanium dioxide with base fluid polymers) in terms of flow dynamics, heat transfer, and magneto hydrodynamics. Energy and momentum equations, considering magneto hydrodynamic forms and heat transfer, are analyzed. The study employs numerical methods, including similarity transforms and a shooting approach, to solve the governing equations. Core findings: Several parameters, including permeable parameter, magnetic parameter, squeeze flow index parameter, volume fraction by nanoparticles, and radiation parameter, are investigated for their effects on temperature profile and velocity profile. The study illustrates these effects graphically and discusses the influence of these parameters on different components of velocity and temperature fields. Additionally, the impact of the radiation parameter ([Formula: see text] on temperature fields is examined for both positive. Future work: Future research may focus on further optimizing the tri-hybrid nanofluid composition for specific applications, exploring additional parameters that may affect flow behavior, heat transfer, and entropy generation. Additionally, experimental validation of the numerical findings and the development of more advanced numerical techniques for solving complex fluid dynamics problems could be the areas of interest for future work.

Funder

Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3