KAC SegNet: A Novel Kernel-Based Active Contour Method for Lung Nodule Segmentation and Classification Using Dense AlexNet Framework

Author:

Dodia Shubham1ORCID,Annappa B.1,Mahesh Padukudru A.2

Affiliation:

1. Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India

2. Department of Pulmonology, JSS Hospital, Mysore, Karnataka, India

Abstract

Lung cancer is known to be one of the leading causes of death worldwide. There is a chance of increasing the survival rate of the patients if detected at an early stage. Computed Tomography (CT) scans are prominently used to detect and classify lung cancer nodules/tumors in the thoracic region. There is a need to develop an efficient and reliable computer-aided diagnosis model to detect lung cancer nodules accurately from CT scans. This work proposes a novel kernel-based active-contour (KAC) SegNet deep learning model to perform lung cancer nodule detection from CT scans. The active contour uses a snake method to detect internal and external boundaries of the curves, which is used to extract the Region Of Interest (ROI) from the CT scan. From the extracted ROI, the nodules are further classified into benign and malignant using a Dense AlexNet deep learning model. The key contributions of this work are the fusion of an edge detection method with a deep learning segmentation method which provides enhanced lung nodule segmentation performance, and an ensemble of state-of-the-art deep learning classifiers, which encashes the advantages of both DenseNet and AlexNet to learn better discriminative information from the detected lung nodules. The experimental outcome shows that the proposed segmentation approach achieves a Dice Score Coefficient of 97.8% and an Intersection-over-Union of 92.96%. The classification performance resulted in an accuracy of 95.65%, a False Positive Rate, and False Negative Rate values of 0.0572 and 0.0289. The proposed model is robust compared to the existing state-of-the-art methods.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3