A Predictive Model for the Elastic Properties of a Collagen-Hydroxyapatite Porous Scaffold for Multi-Layer Osteochondral Substitutes

Author:

Gastaldi Dario1,Parisi Gianluca1,Lucchini Riccardo1,Contro Roberto1,Bignozzi Simone2,Ginestra Paola S.2,Filardo Giuseppe2,Kon Elisaveta2,Vena Pasquale13

Affiliation:

1. Department of Chemistry Materials and Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32-20133 Milano, Italy

2. Biomechanics Lab. II Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1-10, Bologna, Italy

3. IRCCS Istituti Ortopedici Galeazzi, Milano, Italy

Abstract

Damaged articular cartilage can be substituted by porous scaffolds exhibiting tailored mechanical properties and with a suited layer-based design. Reliable predictive models are able to provide a structure–property relationship in the design phase is still an open issue which is of prominent relevance. In this paper, a bottom-up homogenization approach is presented having the purpose to determine the elastic properties of each single layer of a osteochondral porous three-layers scaffold: a top cartilage chondral layer and two mineralized layers: an intermediate and a subchondral bone layer. For the cartilage top layer, dry and wet conditions are considered; while, for intermediate and bone layers only dry conditions are considered. The homogenization model is based on the porosity of each layer and on the elastic properties of the constituent materials, i.e., water, hydroxyapatite (HA) and collagen. The elastic moduli predicted for the mineralized layers are compared with available literature results. The model results obtained on the cartilage layers are validated through flat punch micro-indentation tests carried out on wet and dry samples. The results have shown that the elastic modulus of the mineralized layers is of the order of magnitude of few GPa; whereas, the elastic modulus of the cartilage layer which exhibits porosity higher than 90% is as low as 50 kPa and 300 kPa in wet and dry conditions, respectively. The above results show that the knowledge of the mechanical properties of the basic constituents which are universally known and the porosity of the layers are sufficient information to obtain a reliable prediction of the elastic properties of both mineralized layers and of cartilage layers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3