CHARACTERIZATIONS OF SIZE EFFECT AND OVERALL MECHANICAL BEHAVIOR OF NANOCRYSTALLINE METALS

Author:

CHEN LI1,WEI YUEGUANG1

Affiliation:

1. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, P. R. China

Abstract

A systematical study of size effects and mechanical behaviors for the nanocrystalline (nc) metals is performed. The grain boundary fracture process is considered and described by the mixed-mode interface cohesive model. The grain material is characterized by the conventional theory of strain gradient plasticity. In the present investigation, the effects of five important parameters on the overall mechanical behavior are studied systematically, which include the grain size, critical separation strength, energy release rate of interface separation, mixity of separation strength, as well as the mixity of separation energy release rate. A finite element method (FEM) covering the above characteristics within the grain and on the grain boundary is developed. The present results show that the overall strength and ductility of the nc metals strongly depend on the grain boundary features described by the mixed-mode cohesive interface model, and there is a competition of deformation of grain boundary with that of grain interior.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3