Dynamic Factor of Suburban Railway Bridge Considering Random Vibration

Author:

Cheng Zenong12ORCID,Bai Yun1ORCID,Yang Xinzheng2,Feng Xujie2,Zhang Nan3ORCID

Affiliation:

1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, P. R. China

2. Center of Urban Transportation and Rail Transit, China Academy of Transportation Sciences, Beijing 100029, P. R. China

3. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China

Abstract

The focus of this paper is to examine the dynamic factor of the suburban railway by utilizing the random vibration approach. Breaking through the previous methods of relying on huge amounts of measured data, herein, the dynamic factor essentially results from two major parts: the dynamic effect caused by moving train loads and that generated by track irregularity, which has clear physical significance. As the internal excitation of the vehicle–bridge system, track irregularity has strong randomness. Based on the dimension reduction method, the spatial domain power spectral density (PSD) of the track irregularity is transformed into the time-domain PSD. Therefore, the randomness of the random process is reduced by exploiting the constraint form of a random function, and then, the typical samples of the track irregularity considering randomness are constructed. Using the vehicle–bridge coupled vibration model, the standard deviation of the dynamic factor is evaluated accounting for the random track irregularity and 99.7% guarantee rate. Finally, the impact coefficient of the track irregularity on the bridge is methodically obtained. The sensitivity of the standard deviation of the dynamic factor to vehicle speed and bridge frequency is analyzed. The given solution methodology can fully take into account the randomness of the track irregularity. Thereby, it provides the dynamic factor formulas as a reference for the dynamic performance evaluation of suburban railway bridges and possible revision of current design specifications.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3