Vibration Characteristics of FML Cylindrical Shell Bonded by Thin Piezoelectric Actuator and Sensor Layer with and Without Fluid–Structure Interaction Resting on Pasternak Elastic Foundation

Author:

Khademi-Kouhi M.1ORCID,Ghasemi-Ghalebahman A.2ORCID,Farrokhabadi A.3ORCID,Aliha M. R. M.45ORCID

Affiliation:

1. Department of Aerospace Engineering, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran

2. Faculty of Mechanical Engineering, Semnan University, Semnan 35131-19111, Iran

3. Department of Mechanical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran

4. Welding and Joining Research Center, School of Industrial Engineering, Iran University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran

5. Department of Mechanical Engineering, Engineering Faculty, Gebze Technical University, 41400 Gebze, Kocaeli, Turke

Abstract

The present study investigates the vibration analysis of cylindrical shells composed of fiber metal laminate (FML) with embedded piezoelectric layers, undergoing fluid-structure interaction (FSI) and resting on a Pasternak elastic foundation based on the principles of three-dimensional elasticity theory. Using the state space approach, the equations of motion were derived under simply supported boundary conditions. The natural frequencies of the FML cylindrical shell, accounting for the presence of a moving fluid, were computed by solving the eigenfrequency equations. The study examined the influence of various parameters, including boundary conditions, length-to-radius ratio, fluid type, fluid velocity, circumferential wave number, and radius-to-thickness ratio, on glass-reinforced aluminum laminate (GLARE), aramid-reinforced aluminum laminate (ARALL), and carbon-reinforced aluminum laminate (CARALL). A constant composite/metal volume ratio was assumed. The results obtained were validated by comparing with natural frequency values from the existing literature, confirming the agreement and convergence with previous studies. The results confirm that the highest natural frequency values are assigned to the CARALL, ARALL and GRALE structures in descending order. Furthermore, an increase in fluid flow velocity through the cylindrical shell correlates with a reduction in natural frequency.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal Resonance Response of Incompressible Hyperelastic Moderately Thick Cylindrical Shells;International Journal of Structural Stability and Dynamics;2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3