Prediction of Beyond Design and Residual Performances of Viscoelastic Dampers by a Simplified Fractional Derivative Model

Author:

Wang Shiang-Jung1,Zhang Qun-Ying1,Yu Chung-Han2

Affiliation:

1. Department of Civil and Construction Engineering, National Taiwan University of Science and Technology University, No. 43, Sec. 4, Keelung Rd., Taipei 106335, Taiwan

2. Structural Monitoring and Control Division, National Center for Research on Earthquake Engineering, No. 200, Sec. 3, Xinhai Rd., Taipei 106219, Taiwan

Abstract

When subjected to excessive shear deformation, viscoelastic (VE) dampers may inevitably suffer from damages, due to their VE material layers with limited thickness. Under the circumstance, their stiffness and energy dissipation capabilities may deteriorate but not totally vanish. To estimate the seismic performances of viscoelastically damped structures, the beyond design and residual performances of damaged VE dampers are crucial to protect structures from severe failure during the following main shock or aftershocks. On the other hand, for new viscoelastically damped structures under the normal design earthquakes, neglecting the residual performance of damaged VE dampers may result in nonconservative design. Thus, this study aims to provide approaches to analytically characterize the beyond design and residual performances of damaged full-scale VE dampers. Based on the simplified fractional derivative model, the analytical predictions have been compared with the experimental results. The proposed model works well for the design performance of the intact full-scale VE dampers. Particularly, it can also reproduce the beyond design and residual performances of damaged full-scale VE dampers, if due consideration is taken of the effects of excitation frequencies, ambient temperatures, temperature rises, softening, and hardening.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3