A Fast Multi-Objective Optimization Method for Control Parameters of High-Speed Maglev Vehicle-Bridge System

Author:

Bu Xiumeng1ORCID,Wang Lidong1ORCID,Han Yan1ORCID,Liu Hanyun1ORCID,Hu Peng1ORCID,Cai Chunsheng2ORCID

Affiliation:

1. School of Civil Engineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha, Hunan 410114, P. R. China

2. Department of Bridge Engineering, Southeast University, Nanjing, Jiangsu 210092, P. R. China

Abstract

A fast multi-objective optimization method (FMOOM) is proposed by optimizing control parameters to improve the dynamic performance of a high-speed maglev vehicle–bridge system. This approach involves generating the corresponding dynamic response to the sampled control parameters using a theoretical model of a high-speed maglev vehicle–bridge system, followed by establishing an adaptive surrogate model for the relationship between the control parameters and the dynamic response extrema. In the second step, we combine the adaptive surrogate model and the multi-objective gradient-based optimizer (MOGBO) algorithm to obtain the Pareto solution set satisfying different performance indexes. Additionally, the control parameters are optimized using the fuzzy comprehensive evaluation method. In the numerical simulation, we investigate five maglev trains and ten-span simply supported beam bridges and the theoretical model is verified by comparing the calculations with the measured results. The optimization effect of FMOOM is analyzed under different working conditions. The results show that the adaptive surrogate model has good prediction accuracy based on the radial basis function. Furthermore, the Pareto solution distribution of different schemes using FMOOM is reasonable, and the optimization results are as expected. Compared with the reference scheme, the dynamic response of the maglev vehicle–bridge system is smaller after being subjected to FMOOM optimization, and the six performance indexes are dramatically improved.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Hunan Province

Open Fund of Key Laboratory of Safety Control of Bridge Engineering, Ministry of Education

Postgraduate Scientific Research Innovation Project of Hunan Province

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3