A stability result for the first Robin–Neumann eigenvalue: A double perturbation approach

Author:

Cito Simone1ORCID,Paoli Gloria2ORCID,Piscitelli Gianpaolo3ORCID

Affiliation:

1. Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy

2. Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli studi di Napoli Federico II, Via Cinthia — Complesso, Universitario, di Monte Sant’Angelo, 80126 Napoli, Italy

3. Dipartimento di Scienze Economiche, Giuridiche, Informatiche e Motorie Università degli Studi, di Napoli Parthenope, Via Guglielmo Pepe, Rione Gescal, 80035 Nola (NA), Italy

Abstract

Let [Formula: see text], [Formula: see text], where [Formula: see text] and [Formula: see text] are two open, bounded and convex sets such that [Formula: see text] and let [Formula: see text] be a given parameter. We consider the eigenvalue problem for the Laplace operator associated to [Formula: see text], with Robin boundary condition on [Formula: see text] and Neumann boundary condition on [Formula: see text]. In [47] it is proved that the spherical shell is the only maximizer for the first Robin–Neumann eigenvalue in the class of domains [Formula: see text] with fixed outer perimeter and volume. We establish a quantitative version of the afore-mentioned isoperimetric inequality; the main novelty consists in the introduction of a new type of hybrid asymmetry, that turns out to be the suitable one to treat the different conditions on the outer and internal boundary. Up to our knowledge, in this context, this is the first stability result in which both the outer and the inner boundary are perturbed.

Funder

Elliptic and parabolic problems, heat kernel estimates and spectral theory

A sustainable and trusted Transfer Learning Platform for Edge Intelligence

Geometric-AnalyticMethods for PDEs and Applications

Alexander von Humboldt Foundation through an Alexander von Humboldt research fellowship

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3