Analysis of triple-band binary metamaterial absorber based on low-permittivity all-dielectric resonance surface

Author:

Wang Qiang12,Wang Yan12,Tang Xiu-Zhi12,Huang Xiaozhong12,Xiong Yijun12,Zhang Fen32

Affiliation:

1. School of Aeronautics and Astronautics, Central South University, Changsha 410083, P. R. China

2. Hunan Key Laboratory of Advanced Fibers and Composites, Central South University, Changsha 410083, P. R. China

3. School of Physics and Electronics, Central South University, Changsha 410083, P. R. China

Abstract

Different from the conventional metamaterial absorbers (MAs), which used metal resonance surface and ternary structure (metal–dielectric-backplane), as an alternative route, the all-dielectric resonance surface (ADRS) made of single low-permittivity dielectric is proposed to design binary (dielectric backplane) metamaterial absorber (BMA). As an illustration, a triple-band BMA composed of ADRS with a metallic backplane is designed and fabricated, where the ADRS incorporates two dielectric layers with different hole-array structures. The absorbing mechanisms of this kind of absorber are analyzed via analyzing configurations of power loss density, electric field and magnetic field, as well as investigating dependences of absorbing properties on structure dimensions. The study indicates that the structural design of ADRS leads to reverse magnetic field rings distributed inside the dielectric, forming the strong couplings at the resonance frequencies. The proposed BMA relies on low-permittivity ADRS, with the rapid preparation and low cost greatly simplifying the design of MAs. The current concept is also suitable to design multi-band and broadband MAs worked at other bands, by changing the structural design of ADRS.

Funder

Fundamental Research Funds for the Central Universities of Central South University

Science and Technology Plan Project of Hunan Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3