Novel Target Genes Responsive to Apoptotic Activity by Ocimum gratissimum in Human Osteosarcoma Cells

Author:

Lin Chien-Chung12,Chao Pei-Yu34,Shen Chia-Yao5,Shu Jyuan-Jen6,Yen Shiow-Kang1,Huang Chih-Yang478,Liu Jer-Yuh96

Affiliation:

1. Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan

2. Orthopaedic Department, Armed Forces General Hospital, Taichung, Taiwan

3. Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung, Taiwan

4. Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan

5. Department of Nursing, MeiHo University, Pingtung, Taiwan

6. Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan

7. Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan

8. Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan

9. Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan

Abstract

Osteosarcoma (OS) is a type of bone cancer. Eighty percent of this tumor will metastasize to the lungs or liver, and as a result, patients generally need chemotherapy to improve survival possibility. Recently, antitumor activity has been reported in Ocimum gratissimum aqueous extract (OGE), which has been the focus of recent extensive studies on therapeutic strategies due to its antioxidant properties. We performed pharmacogenomics analyses for the effect of OGE on human osteosarcoma U2-OS and HOS cell growth. Cell viability, Western blot and flow cytometry analysis were performed before performing pharmacogenomics analyses for the effect of OGE on human osteosarcoma U2-OS and HOS cell growth, including cDNA microarray and RT-PCR assays. Cell viability assays revealed that OGE significantly and dose-dependently decreased the viability of U2-OS and HOS cells. Increases in cell shrinkage, Sub-G1 fragments and the activation of caspase 3 indicated that OGE induced cell apoptosis in U2-OS and HOS cells. There was no change in human osteoblast hFOS cells. cDNA microarray assay demonstrated that the expression of cell cycle regulators, apoptosis-related factors and cell proliferation markers were all modified by OGE treatment. RT-PCR analysis also confirmed the down-regulation of SKA2 and BUB1B, and the up-regulation of PPP1R15A, SQSTM1, HSPA1B, and DDIT4 by OGE treatment. The finding of anticancer activity in OGE and the identification of some potential target genes raise the expectation that OGE may become a useful therapeutic drug for human OS.

Publisher

World Scientific Pub Co Pte Lt

Subject

Complementary and alternative medicine,General Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3