OPTIMIZATION OF END TRAJECTORY OF MEDICAL ROBOT ARM BASED ON HUMAN BIOMIMETICS

Author:

WANG ZHILIN12ORCID,SU DONGHAI1ORCID

Affiliation:

1. School of Mechanical Engineering, Shenyang University of Technology, Shenyang, Liaoning Province 110870, P. R. China

2. School of Chemical Engineering and Machinery, Liaodong University, Dandong, Liaoning Province 118001, P. R. China

Abstract

The end effector of a medical robotic arm based on human bionics is responsible for surgical operations, and reasonable end effector trajectory operation is significant to robots. A deep learning method based on Faster R-CNN network is proposed for optimizing the end trajectory of a seven-degrees-of-freedom biomimetic medical robotic arm. In this method, RPN replaces conventional search in deep learning, and RoI Pooling completes network partitioning, thereby improving the efficiency of deep learning. The experimental results show that, with four data types as inputs: velocity, angular velocity, acceleration, and angular acceleration, the Faster R-CNN network achieves effective optimization results. The end trajectory of the seven-degrees-of-freedom biomimetic medical robotic arm becomes smooth, and the impact force during the speed reversal process is significantly reduced.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3