GLOBAL PERIODICITY CONDITIONS FOR MAPS AND RECURRENCES VIA NORMAL FORMS

Author:

CIMA ANNA1,GASULL ARMENGOL1,MAÑOSA VÍCTOR2

Affiliation:

1. Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

2. Departament de Matemàtica Aplicada III (MA3), Control, Dynamics and Applications Group (CoDALab), Universitat Politècnica de Catalunya (UPC), Colom 1, 08222 Terrassa, Spain

Abstract

We face the problem of characterizing the periodic cases in parametric families of rational diffeomorphisms of 𝕂k, where 𝕂 is ℝ or ℂ, having a fixed point. Our approach relies on the Normal Form Theory, to obtain necessary conditions for the existence of a formal linearization of the map, and on the introduction of a suitable rational parametrization of the parameters of the family. Using these tools we can find a finite set of values p for which the map can be p-periodic, reducing the problem of finding the parameters for which the periodic cases appear to simple computations. We apply our results to several two- and three-dimensional classes of polynomial or rational maps. In particular, we find the global periodic cases for several Lyness-type recurrences.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meromorphic first integrals of analytic diffeomorphisms;Journal of Mathematical Analysis and Applications;2023-03

2. Birkhoff normal form and twist coefficients of periodic orbits of billiards*;Nonlinearity;2022-06-23

3. Parrondo's dynamic paradox for the stability of non-hyperbolic fixed points;Discrete & Continuous Dynamical Systems - A;2018

4. Different Approaches to the Global Periodicity Problem;Difference Equations, Discrete Dynamical Systems and Applications;2016

5. Non-integrability of measure preserving maps via Lie symmetries;Journal of Differential Equations;2015-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3